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Nonlinear time-varying systems without mechanismmodels are common in application.They cannot be controlled directly by the
traditional control methods based on precise mathematical models. Intelligent control is unsuitable for real-time control due to its
computation complexity. For that sake, a multidimensional Taylor network (MTN) based output tracking control scheme, which
consists of two MTNs, one as an identifier and the other as a controller, is proposed for SISO nonlinear time-varying discrete-time
systems with no mechanism models. A MTN identifier is constructed to build the offline model of the system, and a set of initial
parameters for online learning of the identifier is obtained. Then, an ideal output signal is selected relative to the given reference
signal. Based on the system identification model, Pontryagin minimum principle is introduced to obtain the numerical solution of
the optimal control law for the system relative to the given ideal output signal, with the corresponding optimal output taken as the
desired output signal. AMTN controller is generated automatically to fit the numerical solution of the optimal control law using the
conjugate gradient (CG) method, and a set of initial parameters for online learning of the controller is obtained. An adaptive back
propagation (BP) algorithm is developed to adjust the parameters of the identifier and controller in real time, and the convergence
for the proposed learning algorithm is verified. Simulation results show that the proposed scheme is valid.

1. Introduction

Nonlinear time-varying systems without mechanism models
exist in practical engineering applications widely. However,
it is difficult to obtain the precise mathematical model of
a system due to the limitation of the modeling theory, the
influences of its internal structure and parameter variations,
and the external environment disturbances. In addition,
the state variables are not easy to be determined, and it
is inconvenient for state feedback control to be realized
physically due to the practical and economic limitations of
the measuring equipment in engineering practices. Output
feedback control [1–6], which is of great theoretic and realistic
significance, is to probe into the problem for nonlinear time-
varying systems without mechanism models.

Nonlinear autoregressive moving average with exoge-
nous inputs (NARMAX) model describes an input-output
relationship for a nonlinear dynamic system, by which the
system output can be represented as a nonlinear functional
expansion of its lagged inputs and outputs [7–9]. NARMAX
has attracted considerable interest both in its theory and
in applications [10–13], especially in the field of black-box
nonlinear modeling. It is also referred to as time-varying
NARMAXmodel in [14]. Neural network (NN) has the ability
to approximate any continuous function with an arbitrary
degree of accuracy over a compact set [15], and various kinds
of NN have been used in system identification and control [7,
8, 16–24]. However, to satisfy the approximation requirement
of a high-order uncertain system, both the numbers of
the hidden layer neurons and the corresponding weight
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parameters needing online updating are large, which leads to
the fact that the learning time tends to be unacceptably long
and the real-time control is hardly realizable in practice. In
addition,NNcanonly represent local dynamic characteristics
when the state goes without too much change. However, the
actual state change can be quite notable or even divergent.
Thus NN cannot represent dynamic characteristics in the
general sense. In fact, it cannot approximate to the unstable
system as the artificial neurons suffer the limitations from the
sign function, sigmoid function, and radial basis function,
regardless of sample size or weight parameters. Furthermore,
NN cannot approximate any continuous function to an
arbitrarily degree of accuracy if the sign function or the
sigmoid function is removed. From the point of view of the
frequency characteristics of the input signals, a signal can
be viewed as the superposition of value-high signal with the
lowest frequency and value-low signalswith high frequencies.
Therefore, the value-low signals with high frequencies tend
to be limited or restrained by the sign function, sigmoid
function, or radial basis function of the artificial neuron, as
a result of which the output of NNmay fail to track the rapid
change of its input. In terms of the neural network function
approximation theorem, a three-layer neural network can
approximate any nonlinear real-valued continuous function
defined on a closed bounded subset. However, it cannot
ensure that the nonlinear real-valued continuous function
can be well approximated outside the closed bounded subset.
Therefore, the general nonlinear dynamic system in the
entire state space (i.e., not the bounded subset) is difficult
to be approximated with an arbitrary degree of accuracy.
As the polynomial function tends to be of infinity, the
multidimensional Taylor network (MTN, whose idea was
proposed by Hong-Sen Yan in 2010 and realization was done
by Bo Zhou) is good at approximating or representing the
general nonlinear dynamic system. It is suitable to be used
as the identified dynamic model of the controlled plant,
as it can represent polynomial dynamic system accurately,
being simple with only states and inputs, and can be easily
analyzed and solved for optimal control in terms of the
minimum principle. However, NN only approximates the
polynomial dynamic system instead of representing it. It is
too complicated to be analyzed or solved for optimal control
[25]. In addition, exponential function is contained in NN,
which leads to the computational complexity and poor real-
time control performance by a single chip microcomputer
(SCM) and embedded system.That makes us resort to MTN,
whereby only addition and multiplication are needed, its
computation complexity being nearly that of the Taylor
expansion of a single neuro in NN.

MTN, first presented in [26], can reflect the dynamic
characteristics of the system without knowing the order or
other prior knowledge of the system. It approximates any
nonlinear function with an arbitrary high accuracy, thus
widely being applied in the study of time series prediction
problems successfully [27–32]. The idea of MTN optimal
control was proposed by Hong-Sen Yan in 2010 [33]. The
optimal adjustment control of SISO nonlinear time-invariant
systems has been achieved by introducing control input into
MTN [34]. Asymptotic tracking and dynamic regulation of

SISO nonlinear system based on discrete multidimensional
Taylor network are considered in [35]. However, the system
without mechanism model is not considered, nor are the
time-varying characteristics of the nonlinear discrete-time
system. MTN relies on the polynomial network for identi-
fication and control of the nonlinear system [10] in which
the system considered is constant and its learning algorithm
is based on the gradient descent algorithm with constant
learning factor, which leads to its slow learning speed and
convergence to local minima.

Due to the uncertainties of the external environment and
time-varying characteristics of a controlled plant [36, 37], the
identifier and controller parameters need constant updating
online in the process of its control, and the adjustments
affect not only the control process but the robustness of the
controller. Therefore, designing a desirable real-time self-
tuning rule for the weight parameters of the identifier and
controller is highly wanted. Backpropagation (BP) algorithm
[38] is the most widely used learning algorithm in training
multilayer neural network. However, it has such drawbacks
as slow convergence speed and local optimal point. To raise
the convergence speed, the improvement of BP algorithm
[39–42] has been focused on, with certain desirable results
achieved. However, in the improved learning algorithm, the
learning rate and momentum factor are taken as constants
in the interval (−1,1) randomly. There have emerged some
other evolutionary algorithms developed to adjust the weight
parameters for NN, such as genetic algorithm (GA) [43], par-
ticle swarm optimization (PSO) algorithm [44], the hybrid
of them [45, 46], and the fuzzy logic approach [47], and so
on. It has been shown that the coefficients should not remain
fixed but should be changed adaptively throughout the entire
training process so as to produce better training results, and
it leads to the emergence of various schemes for adjusting
the learning rate and momentum factor of BP algorithms
adaptively [48, 49].

In this paper, a MTN-based output tracking real-time
control scheme, which consists of two MTNs, one as the
identifier and the other as the controller, is proposed for
SISO nonlinear time-varying discrete-time systems without
mechanismmodels. AMTN identifier is developed for offline
modeling of the system, and a set of initial parameters
for online learning of the identifier is obtained. An ideal
output signal is then selected for the given reference signal.
Pontryagin minimum principle is employed to obtain the
numerical solution of the optimal control law of the system
relative to the ideal output signal, with the corresponding
optimal output called the desired output signal. A MTN
controller is generated automatically to fit the numerical
solution of the optimal control law via the CGmethod, and a
set of initial parameters for online learning of the controller is
obtained. Based on the above, a novel adaptive BP algorithm
for adjusting both the learning rate and themomentum factor
in real time is designed to further enhance the learning speed
of the identifier and controller. Finally, the convergence of the
novel adaptive BP algorithm is analyzed. Simulation results
show that the proposed scheme is valid.

This paper is arranged as follows: in Section 2, problem
description; in Section 3, identifier design; in Section 4,
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Figure 1: Block diagram of control system (1).

automatic generation of the controller; in Section 5, selec-
tion of initial value of the online controller parameters; in
Section 6, controller parameters self-tuning; The algorithm
steps for MTN optimal control scheme are summarized
in Section 7; simulation study is mentioned in Section 8;
conclusion is in Section 9.

2. Problem Statement

Consider the following unknown SISO nonlinear time-
varying discrete-time system described by the input-output
difference equation:

𝑦 (𝑘 + 1) = 𝑓 (𝑦 (𝑘) , 𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛𝑦) , 𝑢 (𝑘) ,
𝑢 (𝑘 − 1) , . . . , 𝑢 (𝑘 − 𝑛𝑢) , 𝑘) , (1)

where 𝑓(⋅) is an unknown nonlinear scale function, 𝑦(𝑘) and𝑢(𝑘) are the output and input of the system, and 𝑛𝑦 and 𝑛𝑢 are
the corresponding maximum delays.

The goals of the present study are as follows: (a) to design
an offline identifier to build the system model based on
the input-output data pairs {𝑢(𝑘), 𝑦(𝑘 + 1)}; (b) to design
such real-time controller that allows the output 𝑦(𝑘) of the
system (1) to track the given reference signal 𝑟(𝑘) as closely as
possible.

The block diagram of control system (1) is shown in
Figure 1. For clarity, the multidimensional Taylor network
identifier and controller are abbreviated as MTNI and
MTNC, as shown in Figure 1.

3. System Identification

It is known from [26] that MTN provides a good nonlinear
function approximation approach, and 𝑓(⋅) in the system (1)
can be approximated with arbitrary precision by MTN, using
an appropriate learning algorithm. Let 𝑓(⋅) be the mapping
relationship, and we obtain the MTN model (MTNI) of the
system (1) as follows:

𝑦 (𝑘 + 1) = 𝑓 (�̂�1𝑦 (𝑘) , �̂�2𝑦 (𝑘 − 1) , . . . , �̂�𝑛𝑦+1𝑦 (𝑘 − 𝑛𝑦) ,
�̂�1𝑢 (𝑘) , �̂�2𝑢 (𝑘 − 1) , . . . , �̂�𝑛𝑢+1𝑢 (𝑘 − 𝑛𝑢) , ŵ (𝑘))

(2)

where 𝑦(𝑘+1) is the output ofMTNI, ŵ(𝑘) is the weight coef-
ficient vector of MTNI, and �̂�𝑖 and �̂�𝑗 are positive constants,𝑖 = 1, 2, . . . , 𝑛𝑢 + 1, 𝑗 = 1, 2, . . . , 𝑛𝑦 + 1.

For convenience and without loss of generality, set �̂� =𝑛𝑦 + 𝑛𝑢 + 2 and we get

ẑ (𝑘) = [�̂�1 (𝑘) , . . . , �̂�𝑛𝑦+1 (𝑘) , �̂�𝑛𝑦+2 (𝑘) , . . . , �̂��̂�−1 (𝑘) ,
�̂��̂� (𝑘)]T = [�̂�1𝑦 (𝑘) , . . . , �̂�𝑛𝑦+1𝑦 (𝑘 − 𝑛𝑦) , �̂�2𝑢 (𝑘 − 1) , . . . ,
�̂�𝑛𝑢+1𝑢 (𝑘 − 𝑛𝑢) , �̂�1𝑢 (𝑘)]T .

(3)

Setting the weight coefficient vector of MTNI as ŵ(𝑘) =[𝑤1(𝑘), . . . , 𝑤�̂�(�̂�,�̂�)(𝑘)]T allows us to rewrite the identification
model (2) as

𝑦 (𝑘 + 1) = �̂�(�̂�,�̂�)∑̂
𝑝=1

𝑤𝑝 (𝑘) �̂�∏̂
𝑞=1

�̂��̂�(𝑝,𝑞)
𝑞 (𝑘) , (4)

where �̂�(�̂�, �̂�) represents the total number of product items
of the �̂�-ary function 𝑓(⋅) expanded into the approximate
polynomial with �̂� powers, 𝑤𝑝(𝑘) is the weight coefficient
of the 𝑝-th product item in the formula, �̂�(𝑝, 𝑞) denotes the
power of the variable �̂�𝑞(𝑘) in the 𝑝-th product item, and
∑�̂�𝑞=1 �̂�(𝑝, 𝑞) ≤ �̂�, where 𝑝 = 1, 2, . . . , �̂�(�̂�, �̂�).

The diagram of MTNI is shown in Figure 2.
To calculate �̂�(�̂�, �̂�) and �̂�(𝑝, 𝑞), the product items in

(4) are rearranged as illustrated in Figure 3, i.e., storing the
product items of the expansion according to their powers,
respectively. We use the symbol (�̂�, 𝑗) to denote the �̂�-th
rectangle in which the product items with 𝑗-th power are
stored and store the product items with 𝑗-th power which are
got by adding 1 on the power of the �̂�-th element �̂��̂�(𝑘) from
the �̂�-th rectangle to the �̂�-th rectangle with 𝑗 − 1-th power
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Figure 2: The diagram of MTNI.

into (�̂�, 𝑗), and so on, until storing the product items with �̂�-
th power which are obtained by adding 1 on the power of the�̂�-th element �̂��̂�(𝑘) in (�̂�, �̂�−1) into (�̂�, �̂�), where �̂� = 1, 2, . . . , �̂�
and 𝑗 = 2, 3, . . . , �̂�.

The calculation of �̂�(�̂�, �̂�) and �̂�(𝑝, 𝑞) goes as follows.
Let �̂�(�̂�, 𝑗) represent the number of product items in (�̂�, 𝑗),

and we get

�̂� (�̂�, �̂�) = �̂�∑̂
𝑗=1

�̂�∑̂
𝑖=1

�̂� (�̂�, 𝑗) + 1 (5)

where

�̂� (�̂�, 𝑗) = {{{{{{{
�̂�∑̂
𝑠=�̂�

�̂� (𝑠, 𝑗 − 1) , 𝑗 = 2, 3, . . . , �̂�,
1, 𝑗 = 1.

(6)

Suppose that, in (4), from the 2-th item, the 𝑝-th product
item corresponds to the 𝑟-th product item in (�̂�, 𝑗) of Figure 3.

For clarity, the power of the element �̂�𝑞(𝑘) is termed as�̂� �̂�,𝑗(𝑟, 𝑞), and𝑄𝑗(𝑎, �̂�) represent the number of product items
with the 𝑗-th power from the 𝑎-th to the �̂�-th rectangle. From
Figure 3, it is known that

�̂� �̂�,𝑗 (𝑟, 𝑞)
= {{{

�̂� �̂�+𝑑,𝑗−1 (𝑟 − 𝑄𝑗−1 (�̂�, �̂� + 𝑑 − 1) , 𝑞) + 1, 𝑞 = �̂�,
�̂� �̂�+𝑑,𝑗−1 (𝑟 − 𝑄𝑗−1 (�̂�, �̂� + 𝑑 − 1) , 𝑞) , 𝑞 ̸= �̂�,

(𝑗 = 2, 3, . . . , �̂�)

𝑄𝑗 (𝑎, �̂�) =
{{{{{{{
�̂�∑̂
𝑠=𝑎

�̂� (𝑠, 𝑗) , 𝑎 ≤ �̂�,
0, 𝑎 > �̂�,

(𝑗 = 2, 3, . . . , �̂�) .

(7)
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Figure 4: The diagram of system identification.

The initial values are set as follows:

�̂� �̂�,𝑗 (𝑟, 𝑞) = {{{
1, 𝑞 = �̂�,
0, 𝑞 ̸= �̂�, (𝑗 = 1) ,

𝑄𝑗 (𝑎, �̂�) = {{{
�̂� − 𝑎 + 1, 𝑎 ≤ �̂�,
0, 𝑎 > �̂�, (𝑗 = 1) ,

(8)

where𝑄𝑗−1(�̂�, �̂� + 𝑑 − 1) < 𝑟 ≤ 𝑄𝑗−1(�̂�, �̂� + 𝑑), 𝑑 = 0, 1, . . . , �̂� − �̂�
and y = (𝑦(1), 𝑦(2), . . . , 𝑦(N))T.

Based on the above, Figure 4 gives the diagram of system
identification.

3.1. Offline System Identification. The identification error can
be defined as

𝑒 (𝑘 + 1) = 𝑦 (𝑘 + 1) − 𝑦 (𝑘 + 1) , (9)
where 𝑘 = 0, 1, . . . ,N − 1.

The corresponding mean square error is

𝐸 = 1
N

N−1∑
𝑘=0

𝑒2 (𝑘 + 1) . (10)
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Substituting (4) and (9) into (10) yields

𝐸 = 1
N

N−1∑
𝑘=0

(�̂�(�̂�,�̂�)∑̂
𝑝=1

𝑤𝑝 �̂�∏̂
𝑞=1

�̂��̂�(𝑝,𝑞)
𝑞 (𝑘) − 𝑦 (𝑘 + 1))

2

. (11)

Assume

𝛼 (𝑘) = ( �̂�∏̂
𝑞=1

�̂��̂�(1,𝑞)
𝑞 (𝑘) , �̂�∏̂

𝑞=1

�̂��̂�(2,𝑞)
𝑞 (𝑘) , . . . ,

�̂�∏̂
𝑞=1

�̂��̂�(�̂�(�̂�,�̂�),𝑞)
𝑞 (𝑘))

T

A = (𝛼 (0) , 𝛼 (1) , . . . , 𝛼 (N − 1))

(12)

Equation (11) can be rewritten into

𝐸 = 1
N

N−1∑
𝑘=0

(ŵT𝛼 (𝑘) − 𝑦 (𝑘 + 1))2

= 1
N
ŵT

N−1∑
𝑘=0

(𝛼 (𝑘) 𝛼T (𝑘)) ŵ
− 2
N
(N−1∑
𝑘=0

𝑦 (𝑘 + 1) 𝛼T (𝑘)) ŵ

+ 1
N

N−1∑
𝑘=0

𝑦2 (𝑘 + 1) .

(13)

Calculate the partial derivative of 𝐸 with respect to the
weight coefficient vector ŵ, i.e.,

𝜕 𝐸𝜕ŵ = 2
N

N−1∑
𝑘=0

(𝛼 (𝑘) 𝛼T (𝑘)) ŵ
− 2
N

N−1∑
𝑘=0

𝑦 (𝑘 + 1) 𝛼 (𝑘) .
(14)

Setting g = 𝜕 𝐸/𝜕ŵ, Q = (2/N) ∑N−1
𝑘=0 (𝛼(𝑘)𝛼T(𝑘)) and b =−(2/N) ∑N−1

𝑘=0 𝑦(𝑘 + 1)𝛼(𝑘) gives
g = Qŵ + b. (15)

Letting y = (𝑦(1), 𝑦(2), . . . , 𝑦(N))T, the vector form of Q,b and g can be rewritten as

Q = 2
N
AAT,

b = − 2
N
Ay,

g = 2
N
A (ATŵ − y) .

(16)

To obtain a precise model of system (1), the weight
coefficient vector ŵ should be updated over and over again

+

−

Plant

MTNI

Offline 
Learning

Algorithm

u(k)

y(k + 1)

e(k + 1)

y(k + 1)

Figure 5: Block diagram of offline learning of MTNI.

by observation of the input-output data pairs {𝑢(𝑘), 𝑦(𝑘 +1)}. A number of classical weight update laws have been
proposed in the literatures, such as least squares algorithms,
various gradient-type algorithms [50, 51], least-mean-square
(LMS) algorithm [52], etc.The gradient method is commonly
adopted for parameter adjustment; that is, ŵ can be updated
once in the negative gradient direction after each offline
learning. Let ŵ𝜏 represent the value of ŵ after the 𝜏 th
training, and we obtain ŵ𝜏+1 = ŵ𝜏 − 𝜇𝜏g𝜏, where 𝜇𝜏 =gT𝜏 g𝜏/gT𝜏Qg𝜏. However, as the gradient path to the minimum
point is zigzag, the search direction remains vertical to
the last. Fortunately, the problem can be solved effectively
by employing the CG method, whereby the weight can be
updated as follows:

ŵ𝜏+1 = ŵ𝜏 + 𝜇𝜏p𝜏. (17)

where p𝜏 = −g𝜏 + 𝑎𝜏−1p𝜏−1, 𝜇𝜏 = gT𝜏 g𝜏/pT𝜏Qp𝜏, 𝑎𝜏−1 =gT𝜏Qp𝜏−1/pT𝜏−1Qp𝜏−1, and the initial value is p1 = −g1.
The block diagram of offline learning of MTNI (4) is

shown in Figure 5.

3.2. Real-Time Learning for the Weights of MTNI. For an
unknown system, system identification is the mathematical
modeling process by observation of the input-output data
pairs. Nonlinear time-varying system identification based on
MTNI is to take the connection weight coefficients of MTNI
as time-varying parameters to be estimated and trained
online by suitable learning algorithm, with the same outputs
of the plant and the model for the same set of inputs. The
weight coefficients need to be adjusted online for desirable
real-time identification effect.

Set the performance function for MTNI as

𝐸 (ŵ (𝑘)) = 12𝑒2 (ŵ (𝑘)) , (18)

where 𝑒(ŵ(𝑘)) = 𝑒(𝑘 + 1), 𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦(𝑘 + 1)
represents the identification error at time 𝑘 + 1, and 𝑘 =0, 1, . . ..

To obtain a better identification effect for the unknown
nonlinear time-varying system, the weight coefficients of
MTNI should be adjusted adaptively throughout the entire
training process. A novel adaptive BP algorithm for adjusting
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both the learning rate and momentum factor adaptively [53–
55] is proposed, and the weight parameters are updated,
i.e.,

ŵ (𝑘 + 1) = ŵ (𝑘) + Δŵ (𝑘) , (19)

where

Δŵ (𝑘) = −𝜂 (𝑘) ∇𝐸 (ŵ (𝑘)) + �̂� (𝑘) Δŵ (𝑘 − 1) , (20)

𝜂 (𝑘) = min {𝜂 (𝑘 − 1) (1 + 𝜂0 cos 𝜃 (𝑘)) , 𝜂max} , (21)

�̂� (𝑘) = 𝛽 (𝑘) 𝜂2 (𝑘) , (22)

𝛽 (𝑘) = {{{{{
𝛽0−∇𝐸 (ŵ (𝑘)) ⋅ Δŵ (𝑘 − 1)‖Δŵ (𝑘 − 1)‖2 , if ∇𝐸 (ŵ (𝑘)) ⋅ Δŵ (𝑘 − 1) < 0,
0, else, (23)

where ∇𝐸(ŵ(𝑘)) is the partial derivative of 𝐸(ŵ(𝑘)) with
respect to ŵ(𝑘); 𝜂0, 𝜂max, 𝛽0 are constants, and 0 ≤ 𝜂0 ≤ 1, 0 <𝜂max < 1, 0 ≤ 𝛽0 < 1; 𝜃(𝑘) is the angle between the current
gradient −∇𝐸(ŵ(𝑘)) and previous update Δŵ(𝑘 − 1), given by
cos 𝜃(𝑘) = −∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘 − 1)/‖∇𝐸(ŵ(𝑘))‖‖Δŵ(𝑘 − 1)‖.
Theorem 1. For any given set of weight coefficient vector ŵ(0),
if ŵ(𝑘) is generated by the learning rules from (19) to (23), there
exists ∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘) ≤ 0.
Proof. For the first case, i.e., ∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘 − 1) < 0, we
have
Δŵ (𝑘) = −𝜂 (𝑘) ∇𝐸 (ŵ (𝑘)) + �̂� (𝑘) Δŵ (𝑘 − 1)
= 𝜂 (𝑘) (−∇𝐸 (ŵ (𝑘)) + 𝛽0𝜂 (𝑘)
⋅ −∇𝐸 (ŵ (𝑘)) ⋅ Δŵ (𝑘 − 1)‖Δŵ (𝑘 − 1)‖2 Δŵ (𝑘 − 1)) = 𝜂 (𝑘)
⋅ (−∇𝐸 (ŵ (𝑘)) + 𝛽0𝜂 (𝑘)
⋅ ∇𝐸 (ŵ (𝑘)) ‖Δŵ (𝑘 − 1)‖ cos 𝜃 (𝑘)‖Δŵ (𝑘 − 1)‖2 Δŵ (𝑘 − 1))
= 𝜂 (𝑘)(−∇𝐸 (ŵ (𝑘)) + 𝛽0𝜂 (𝑘) cos 𝜃 (𝑘)
⋅ ∇𝐸 (ŵ (𝑘))‖Δŵ (𝑘 − 1)‖Δŵ (𝑘 − 1)) ,

(24)

∇𝐸 (ŵ (𝑘)) ⋅ Δŵ (𝑘) = ∇𝐸T (ŵ (𝑘)) Δŵ (𝑘) = 𝜂 (𝑘)
⋅ (− ∇𝐸 (ŵ (𝑘))2 + 𝛽0𝜂 (𝑘) cos 𝜃 (𝑘)
⋅ ∇𝐸 (ŵ (𝑘))‖Δŵ (𝑘 − 1)‖∇𝐸T (ŵ (𝑘)) Δŵ (𝑘 − 1)) = −𝜂 (𝑘)
⋅ ∇𝐸 (ŵ (𝑘))2 (1 + 𝛽0𝜂 (𝑘) cos2 𝜃 (𝑘))

(25)

As a matter of fact, there exist 𝜂(𝑘) ≥ 0 and 1 +𝛽0𝜂(𝑘)cos2 𝜃𝑘 > 0 when 0 ≤ 𝛽0 < 1 and 0 ≤ 𝜂0 ≤ 1, as a
result of which ∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘) ≤ 0 holds.

For the second case, i.e., ∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘 − 1) ≥ 0, we get𝛽(𝑘) = 0, �̂�(𝑘) = 0 and Δŵ(𝑘) = −𝜂(𝑘)∇𝐸(ŵ(𝑘)), thus,
∇𝐸 (ŵ (𝑘)) ⋅ Δŵ (𝑘) = ∇𝐸T (ŵ (𝑘)) Δŵ (𝑘)

= −𝜂 (𝑘) ∇𝐸 (ŵ (𝑘))2 ≤ 0.
(26)

As revealed by the above two cases, ∇𝐸(ŵ(𝑘)) ⋅ Δŵ(𝑘) ≤ 0
holds.

That completes the proof of Theorem 1.

4. Controller

The control objective is to find a control input 𝑢(𝑘) that
enables the system output to track in real time the given
reference signal 𝑟(𝑘) as closely as possible in real time. In
this section, we consider the controller MTNC generated
automatically as follows:

𝑢 (𝑘) = ℎ (𝑘1𝑢 (𝑘 − 1) , . . . , 𝑘𝑛𝑢𝑢 (𝑘 − 𝑛𝑢) , 𝑙1𝑒 (𝑘 − 1) , . . . ,
𝑙𝑛𝑒𝑒 (𝑘 − 𝑛𝑒) , 𝑘) , (27)

where𝑢(𝑘) is the output ofMTNC, i.e., the input of the system
(1), 𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘) is the tracking error at time 𝑘, 𝑛𝑢
and 𝑛𝑒 are the maximum delays of the output and input of
MTNC, and 𝑙𝑖 and 𝑘𝑗 are positive constants, 𝑖 = 1, 2, . . . , 𝑛𝑒,𝑗 = 1, 2, . . . , 𝑛𝑢.

For convenience, without loss of generality, denote 𝑡 =𝑛𝑢 + 𝑛𝑒, and we have

z (𝑘) = [𝑧1 (𝑘) , . . . , 𝑧𝑛𝑢 (𝑘) , 𝑧𝑛𝑢+1 (𝑘) , . . . , 𝑧𝑡 (𝑘)]T
= [𝑘1𝑢 (𝑘 − 1) , . . . , 𝑘𝑛𝑢𝑢 (𝑘 − 𝑛𝑢) , 𝑙1𝑒 (𝑘 − 1) , . . . ,
𝑙𝑛𝑒𝑒 (𝑘 − 𝑛𝑒)]T .

(28)
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Figure 6: The diagram of MTNC.

Known from [26], there exists a group of weight coeffi-
cient vectors w(𝑘) = [𝑤1(𝑘), . . . , 𝑤𝑁(𝑡,𝑚)(𝑘)]T, and thus, the
input 𝑢(𝑘) can be rewritten as

𝑢 (𝑘) = 𝑁(𝑡,𝑚)∑
𝑝=1

𝑤𝑝 (𝑘) 𝑡∏
𝑞=1

𝑧𝜆(𝑝,𝑞)𝑞 (𝑘) , (29)

where 𝑁(𝑡,𝑚) represents the total number of product items
for the 𝑡-ary function ℎ(⋅) expanded into the approximate
polynomial with 𝑚 powers, 𝑤𝑝(𝑘) denotes the weight coef-
ficient of the 𝑝-th product item, 𝜆(𝑝, 𝑞) is the power of the
variable 𝑧𝑞(𝑘) in the𝑝-th product item, and∑𝑡𝑞=1 𝜆(𝑝, 𝑞) ≤ 𝑚,
where 𝑝 = 1, 2, . . . , 𝑁(𝑡, 𝑚).

The diagram of MTNC is shown in Figure 6.
To calculate 𝑁(𝑡,𝑚) and 𝜆(𝑝, 𝑞), the product items in

(29) are rearranged as illustrated in Figure 7, i.e., storing the
product items of the expansion according to their powers,
respectively. We use the symbol (𝑖, 𝑗) to denote the 𝑖-th
rectangle in which the product items with 𝑗-th power are
stored and store the product items with 𝑗-th power which are
got by adding 1 on the power of the 𝑖-th element 𝑧𝑖(𝑘) from
the 𝑖-th rectangle to the 𝑡-th rectangle with 𝑗 − 1-th power

into (𝑖, 𝑗), and so on, until storing the product items with𝑚-
th power which are obtained by adding 1 on the power of the𝑡-th element 𝑧𝑡(𝑘) in (𝑡, 𝑚−1) into (𝑡, 𝑚), where 𝑖 = 1, 2, . . . , 𝑡
and 𝑗 = 2, 3, . . . , 𝑚.

The calculation of𝑁(𝑡,𝑚) and 𝜆(𝑝, 𝑞) goes as follows.
Let 𝑃(𝑖, 𝑗) represent the number of product items in (𝑖, 𝑗),

and we get

𝑁(𝑡,𝑚) = 𝑚∑
𝑗=1

𝑡∑
𝑖=1

𝑃 (𝑖, 𝑗) + 1, (30)

where

𝑃 (𝑖, 𝑗) = {{{{{
𝑡∑
𝑠=𝑖

𝑃 (𝑠, 𝑗 − 1) , 𝑗 = 2, 3, . . . , 𝑚,
1, 𝑗 = 1. (31)

Suppose that, in (29), from the 2-th item, the𝑝-th product
item is according to the 𝑟-th product item in (𝑖, 𝑗) of Figure 7.
For clarity, the power of the element 𝑧𝑞(𝑘) is termed as𝜆𝑖,𝑗(𝑟, 𝑞), and𝑄𝑗(𝑎, 𝑏) represents the number of product items
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Figure 7: The new arrangement of the product items for MTNC.

with the 𝑗-th power from the 𝑎-th to the 𝑏-th rectangle. From
Figure 7, it is known that

𝜆𝑖,𝑗 (𝑟, 𝑞)
= {{{

𝜆𝑖+𝑑,𝑗−1 (𝑟 − 𝑄𝑗−1 (𝑖, 𝑖 + 𝑑 − 1) , 𝑞) + 1, 𝑞 = 𝑖,
𝜆𝑖+𝑑,𝑗−1 (𝑟 − 𝑄𝑗−1 (𝑖, 𝑖 + 𝑑 − 1) , 𝑞) , 𝑞 ̸= 𝑖,

𝑄𝑗 (𝑎, 𝑏) = {{{{{
𝑏∑
𝑠=𝑎

𝑃 (𝑠, 𝑗) , 𝑎 ≤ 𝑏,
0, 𝑎 > 𝑏.

(32)

The initial values are set as follows:

𝜆𝑖,𝑗 (𝑟, 𝑞) = {{{
1, 𝑞 = 𝑖,
0, 𝑞 ̸= 𝑖, (𝑗 = 1) ,

𝑄𝑗 (𝑎, 𝑏) = {{{
𝑏 − 𝑎 + 1, 𝑎 ≤ 𝑏,
0, 𝑎 > 𝑏, (𝑗 = 1) ,

(33)

where 𝑄𝑗−1(𝑖, 𝑖 + 𝑑 − 1) < 𝑟 ≤ 𝑄𝑗−1(𝑖, 𝑖 + 𝑑), 𝑑 = 0, 1, . . . , 𝑡 − 𝑖
and 𝑖 = 1, 2, . . . , 𝑡.
5. Initial Weight Values of MTNC

The convergence speed is influenced by the selection of
the initial weight values of the controller. However, random

choice of network parameters is the most common practice
in network training. To enhance the convergence speed and
avoid falling into local minimum, two steps are introduced
here for selection of the initial weight values. The first is to
transform the offlinemodel (4) of the system into an extended
state space description form through variable substitution,
select a group of ideal output signal𝑦𝑖𝑑(𝑘) relative to the given
reference signal 𝑟(𝑘), and employ Pontryagin’s minimum
principle to obtain the numerical solution of the optimal
control law 𝑢∗(𝑘) of the system relative to the ideal output
signal 𝑦𝑖𝑑(𝑘), with the corresponding optimal output called
desired output signal 𝑦𝑜𝑝(𝑘). In the second step, a set of
parameter values is given randomly in the interval (-1, 1),
and the CG method is applied for MTNC offline training to
approximate the optimal control law 𝑢∗(𝑘). A set of weight
values are then obtained as the initial values for online
training MTNC, where 𝑘 = 0, 1, . . . ,N − 1. The specific steps
go as follows.

5.1. Optimal Control Law. Based on the identification model
(4) obtained offline for the system (1), 𝑦(𝑘) can be substituted
by 𝑦(𝑘). For convenience, set
x (𝑘) = [𝑥1 (𝑘) , 𝑥2 (𝑘) , . . . , 𝑥𝑛𝑦+1 (𝑘) , 𝑥𝑛𝑦+2 (𝑘) , . . . ,
𝑥�̂�−1 (𝑘)]T = [�̂�1𝑦 (𝑘) , �̂�2𝑦 (𝑘 − 1) , . . . , �̂�𝑛𝑦+1𝑦 (𝑘 − 𝑛𝑦) ,
�̂�2𝑢 (𝑘 − 1) , . . . , �̂�𝑛𝑢+1𝑢 (𝑘 − 𝑛𝑢)]T ,

(34)
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then, we obtain the extended state space description form
with the following variable substitution:

𝑥1 (𝑘 + 1) = �̂�1 �̂�(�̂�,�̂�)∑̂
𝑝=1

𝑤𝑝 �̂�−1∏̂
𝑞=1

𝑥�̂�(𝑝,𝑞)
𝑞 (𝑘) �̂��̂�(𝑝,̂𝑡)1 𝑢�̂�(𝑝,̂𝑡) (𝑘)

𝑥𝑗 (𝑘 + 1) = �̂�𝑗�̂�𝑗−1 𝑥𝑗−1 (𝑘) , (2 ≤ 𝑗 ≤ 𝑛𝑦 + 1)
𝑥𝑛𝑦+2 (𝑘 + 1) = �̂�2𝑢 (𝑘)
𝑥𝑗 (𝑘 + 1) = �̂�𝑗−𝑛𝑦�̂�𝑗−1−𝑛𝑦 𝑥𝑗−1 (𝑘) , (𝑛𝑦 + 3 ≤ 𝑗 ≤ �̂� − 1)

(35)

𝑦 (𝑘) = 1̂𝑘1 𝑥1 (𝑘) . (36)

Consider the following optimal control problem [56]:

min
𝑢(𝑘)

𝐸 = 12
N−1∑
𝑘=0

(𝑦𝑖𝑑 (𝑘) − 𝑦 (𝑘))2 , (37)

where𝑦(𝑘) satisfies such the constraint conditions as (35) and
(36).

Introduce the Hamiltonian equation:

𝐻(𝑘) = 𝐻 (x (𝑘) , 𝑢 (𝑘) ,𝜆 (𝑘 + 1) , 𝑘)
= 12 (𝑦𝑖𝑑 (𝑘) − 1̂𝑘1 𝑥1 (𝑘))

2 + 𝜆1 (𝑘 + 1)

⋅ �̂�1�̂�(�̂�,�̂�)∑̂
𝑝=1

𝑤𝑝 �̂�−1∏̂
𝑞=1

𝑥�̂�(𝑝,𝑞)
𝑞 (𝑘) �̂��̂�(𝑝,̂𝑡)1 𝑢�̂�(𝑝,̂𝑡) (𝑘)

+ 𝑛𝑦+1∑
𝑗=2

𝜆𝑗 (𝑘 + 1) �̂�𝑗�̂�𝑗−1 𝑥𝑗−1 (𝑘) + 𝜆𝑛𝑦+2 (𝑘 + 1) �̂�2𝑢 (𝑘)

+ �̂�−1∑
𝑗=𝑛𝑦+3

𝜆𝑗 (𝑘 + 1) �̂�𝑗−𝑛𝑦�̂�𝑗−1−𝑛𝑦 𝑥𝑗−1 (𝑘)

(38)

where x(𝑘) and 𝜆(𝑘) satisfy the following conditions:
x (𝑘 + 1) = 𝜕𝐻 (𝑘)𝜕𝜆 (𝑘 + 1) , (39)

𝜆 (𝑘) = 𝜕𝐻 (𝑘)𝜕x (𝑘) . (40)

If the control vector is constrained, Hamiltonian function
takes the extreme value on the optimal control sequence
by the minimum principle; i.e., take extreme value on the
extreme values x∗(𝑘) of the optimal trajectory and the
optimal control law 𝑢∗(𝑘), that is,

𝐻(x∗ (𝑘) , 𝑢∗ (𝑘) ,𝜆 (𝑘 + 1) , 𝑘)
= min
𝑢(𝑘)∈Ω

𝐻(x∗ (𝑘) , 𝑢 (𝑘) , 𝜆 (𝑘 + 1) , 𝑘) , (41)

whereΩ is a bounded closed set.

If the control vector is not constrained, Hamiltonian
function takes extreme value from the whole control space𝑅, the extreme condition being

𝜕𝐻 (𝑘)𝜕𝑢 (𝑘) = 0, (42)

and 𝑢(𝑘) ∈ 𝑅.
The given series of control sequence 𝑢(𝑘) (𝑘 = 0, 1, . . . ,

N − 1) can be improved by repeated iteration in the direction
that makes the gradient of Hamiltonian function 𝐻(𝑘)
decrease, until the necessary condition (42) is satisfied. Then
we obtain the numerical solution of the optimal control law𝑢∗(𝑘), where 𝑘 = 0, 1, . . . ,N − 1. For convenience, let U =(𝑢(0), 𝑢(1), . . . , 𝑢(N − 1))T, and the calculation steps are as
follows.

Algorithm 2.

Step 1. Set any given series of control sequence 𝑢𝑀(𝑘) = 𝑢0(𝑘),
where𝑀 is the number of iterations, and the initial value is
set as𝑀 = 0, and 𝑘 = 0, 1, . . . ,N − 1.
Step 2. Solve the state variable x𝑀(𝑘) sequentially by formula
(35) based on U𝑀 and the initial condition x(0), where 𝑘 =1, 2, . . . ,N.
Step 3. Calculate 𝑔𝑀(𝑘) = (𝜕𝐻(𝑘)/𝜕𝑢(𝑘))|𝑢(𝑘)=𝑢𝑀(𝑘), which
is the gradient of 𝐻(𝑘) with respect to 𝑢(𝑘) in the control
sequence 𝑢𝑀(𝑘), and set G𝑀 = (𝑔𝑀(0), 𝑔𝑀(1), . . . , 𝑔𝑀(N −1))T, where 𝑘 = 0, 1, . . . ,N − 1.
Step 4. Calculate ‖G𝑀‖. If ‖G𝑀‖ < 𝜀, stop, or else, revise the
control vector: U𝑀+1 = U𝑀 − 𝜎G𝑀, i.e., 𝑢𝑀+1(𝑘) = 𝑢𝑀(𝑘) −𝜎𝑔𝑀(𝑘), where 𝜀 is a given value, 𝜎 is a fixed step size, and𝑘 = 0, 1, . . . ,N − 1.
Step 5. Let𝑀 = 𝑀 + 1, and return to Step 2.

5.2. Initial Weight Values of MTNC. MTNC is generated
automatically to approximate the numerical solution 𝑢∗(𝑘)
of the optimal control law for the offline model (4) of the
system (1) relative to the ideal output signal𝑦𝑖𝑑(𝑘).Theweight
coefficients of MTNC are obtainable by offline learning, and
the block diagram of offline learning forMTNC (29) is shown
in Figure 8.

The initial weight values of MTNC are secured offline by
the CG method as follows.

Define the appropriate error as

𝑒 (𝑘) = 𝑢∗ (𝑘) − 𝑢 (𝑘) , (43)

where 𝑢(𝑘) is the output of the controller MTNC at time 𝑘.
The corresponding mean square error is

𝐸 = 12
N−1∑
𝑘=0

𝑒2 (𝑘) . (44)



www.manaraa.com

Mathematical Problems in Engineering 11

+

−
MTNC

Offline 
Learning

Algorithm

e∗(k)

u(k)

e(k + 1)

u∗(k)

Figure 8: Block diagram of offline learning of MTNC.

Substituting (43) and (29) into (44) yields

𝐸 = 12
N−1∑
𝑘=0

(𝑢∗ (𝑘) − 𝑁(𝑡,𝑚)∑
𝑝=1

𝑤𝑝 𝑡∏
𝑞=1

𝑧𝜆(𝑝,𝑞)𝑞 (𝑘))2 . (45)

Set

𝛼 (𝑘) = ( 𝑡∏
𝑞=1

𝑧𝜆(1,𝑞)𝑞 (𝑘) , 𝑡∏
𝑞=1

𝑧𝜆(2,𝑞)𝑞 (𝑘) , . . . ,
𝑡∏
𝑞=1

𝑧𝜆(𝑁(𝑡,𝑚),𝑞)𝑞 (𝑘))T ,
A = (𝛼 (0) ,𝛼 (1) , . . . ,𝛼 (N − 1)) ,

(46)

and formula (45) can be rewritten as

𝐸 = 12
N−1∑
𝑘=0

(𝑢∗ (𝑘) − wT
𝛼 (𝑘))2

= 12wT
N−1∑
𝑘=0

(𝛼 (𝑘)𝛼T (𝑘))w
− (N−1∑
𝑘=0

𝑢∗ (𝑘)𝛼T (𝑘))w + 12
N−1∑
𝑘=0

𝑢∗2 (𝑘) .
(47)

Calculate the partial derivative of 𝐸 with respect to the
weight coefficient vector w:

𝜕𝐸𝜕w = N−1∑
𝑘=0

(𝛼 (𝑘)𝛼T (𝑘))w − N−1∑
𝑘=0

𝑢∗ (𝑘)𝛼 (𝑘) . (48)

Let g = 𝜕𝐸/𝜕w, Q = ∑N−1
𝑘=0 (𝛼(𝑘)𝛼T(𝑘)), and b =−∑N−1

𝑘=0 𝑢∗(𝑘)𝛼(𝑘), and we have

g = Qw + b. (49)

Setting u∗ = (𝑢∗(0), 𝑢∗(1), . . . , 𝑢∗(N − 1))T enables us to
get the vector form ofQ, b and g as follows:

Q = AAT,
b = −Au∗,
g = A (ATw − u∗) .

(50)

For the given numerical solution 𝑢∗(𝑘) of the optimal
control, the weight coefficient vector w can be updated once
in the negative gradient direction after each learning. Let w𝜏
represent the value of w after the 𝜏th iterative training; then
we havew𝜏+1 = w𝜏−𝜇𝜏g𝜏, where 𝜇𝜏 = gT𝜏g𝜏/gT𝜏Qg𝜏. However,
as the gradient path to the minimum point is zigzag, the
search direction remains vertical to the last. Fortunately,
the problem can be solved effectively by employing the CG
method, whereby the weight can be updated as follows:

w𝜏+1 = w𝜏 + 𝜇𝜏p𝜏, (51)

where p𝜏 = −g𝜏 + 𝑎𝜏−1p𝜏−1, 𝜇𝜏 = gT𝜏g𝜏/pT𝜏Qp𝜏, 𝑎𝜏−1 =
gT𝜏Qp𝜏−1/pT𝜏−1Qp𝜏−1, and the initial value is defined as p1 =−g1.
6. Real-Time Learning for Weights of MTNC

Due to the real-time modeling error for the unknown
nonlinear time-varying system and the uncertainties existing
in practical applications, the controller with fixed weight
coefficients cannot ensure the lasting robust performance
of the system. Therefore, it is required that the controller
be capable of adjusting automatically for real-time control.
Similar to the real-time learning algorithm forMTNI, a novel
adaptive BP algorithm is proposed here for MTNC real-time
training [53–55].

The performance function is defined as

𝐸 (w (𝑘)) = 12𝑒2 (w (𝑘)) , (52)

where 𝑒(w(𝑘)) = 𝑒(𝑘 + 1), 𝑒(𝑘 + 1) = 𝑟(𝑘 + 1) − 𝑦(𝑘 + 1)
represents the practical tracking error at time 𝑘 + 1.

The weight coefficients of MTNC are updated according
to (53)-(57):

w (𝑘 + 1) = w (𝑘) + Δw (𝑘) , (53)

where

Δw (𝑘) = −𝜂 (𝑘) ∇𝐸 (w (𝑘)) + 𝛼 (𝑘) Δw (𝑘 − 1) , (54)

𝜂 (𝑘) = min {𝜂 (𝑘 − 1) (1 + 𝜂0 cos 𝜃 (𝑘)) , 𝜂max} , (55)
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𝛼 (𝑘) = 𝛽 (𝑘) 𝜂2 (𝑘) , (56)

𝛽 (𝑘) = {{{
𝛽0−∇𝐸 (w (𝑘)) ⋅ Δw (𝑘 − 1)‖Δw (𝑘 − 1)‖2 , if ∇𝐸 (w (𝑘)) ⋅ Δw (𝑘 − 1) < 0,
0, else, (57)

∇𝐸(w(𝑘)) is the partial derivative of 𝐸(w(𝑘)) with respect to
w(𝑘); 𝜂0, 𝜂max, 𝛽0 are constants, and 0 ≤ 𝜂0 ≤ 1, 0 < 𝜂max < 1,0 ≤ 𝛽0 < 1; 𝜃(𝑘) is the angle between the current gradient−∇𝐸(w(𝑘)) and the previous update Δw(𝑘 − 1), given by
cos 𝜃(𝑘) = −∇𝐸(w(𝑘)) ⋅ Δw(𝑘 − 1)/‖∇𝐸(w(𝑘))‖‖Δw(𝑘 − 1)‖.

From (54) and (57), we get

∇𝐸 (w (𝑘)) = 𝑒 (w (𝑘)) 𝑑𝑒 (w (𝑘))𝑑w (𝑘)
= −𝑒 (w (𝑘)) 𝑑𝑦 (𝑘 + 1)𝑑w (𝑘) .

(58)

As the system considered is unknown, the output 𝑦(𝑘) of
the actual system can be replaced with the output 𝑦(𝑘) of the
identification model (4), that is,

𝑦 (𝑘 + 1) ≈ 𝑦 (𝑘 + 1) = �̂�(�̂�,�̂�)∑̂
𝑝=1

𝑤𝑝 (𝑘) �̂�∏̂
𝑞=1

�̂��̂�(𝑝,𝑞)
𝑞 (𝑘) , (59)

where �̂�, �̂�, �̂�(�̂�, �̂�), 𝑝, 𝑞, �̂�(𝑝, 𝑞), 𝑤𝑝(𝑘) and �̂�𝑞(𝑘) have the
same meanings as in (4), and 𝑘 = 0, 1, 2, . . ..

Thus,

𝑑𝑦 (𝑘 + 1)𝑑w (𝑘) ≈ 𝑑𝑦 (𝑘 + 1)𝑑w (𝑘) , (60)

𝑑𝑦 (𝑘 + 1)𝑑w (𝑘) = �̂�1 𝜕𝑦 (𝑘 + 1)𝜕�̂��̂� (𝑘)
𝑑𝑢 (𝑘)𝑑w (𝑘) . (61)

In (61), the first part on the right side of the equation can
be calculated using the real-time identificationmodel (4), and
the second term can be done as follows:

𝑑𝑢 (𝑘)𝑑w (𝑘) = 𝛼 (𝑘) (62)

where 𝛼(𝑘) is mentioned before.

Theorem 3. For any given set of weight vector w0 of MTNC
used to approximate the optimal control law 𝑢∗(𝑘) offline, by
taking the weight vector w∗0 as the initial values for online
learning, we have ∇𝐸(w(𝑘)) ⋅ Δw(𝑘) ≤ 0 if w(𝑘) is updated
with the learning rules from (53) to (57).

Proof. For the first case, i.e., if∇𝐸(w(𝑘)) ⋅Δw(𝑘−1) < 0 holds,
then

Δw (𝑘) = −𝜂 (𝑘) ∇𝐸 (w (𝑘)) + 𝛼 (𝑘) Δw (𝑘 − 1)
= 𝜂 (𝑘) (−∇𝐸 (w (𝑘)) + 𝛽0𝜂 (𝑘)
⋅ −∇𝐸 (w (𝑘)) ⋅ Δw (𝑘 − 1)‖Δw (𝑘 − 1)‖2 Δw (𝑘 − 1)) = 𝜂 (𝑘)
⋅ (−∇𝐸 (w (𝑘)) + 𝛽0𝜂 (𝑘)
⋅ ‖∇𝐸 (w (𝑘))‖ ‖Δw (𝑘 − 1)‖ cos 𝜃 (𝑘)‖Δw (𝑘 − 1)‖2 Δw (𝑘 − 1))
= 𝜂 (𝑘) (−∇𝐸 (w (𝑘)) + 𝛽0𝜂 (𝑘)
⋅ cos 𝜃 (𝑘) ‖∇𝐸 (w (𝑘))‖‖Δw (𝑘 − 1)‖Δw (𝑘 − 1)) ,

(63)

∇𝐸 (w (𝑘)) ⋅ Δw (𝑘) = ∇𝐸T (w (𝑘)) Δw (𝑘) = 𝜂 (𝑘)
⋅ (− ‖∇𝐸 (w (𝑘))‖2 + 𝛽0𝜂 (𝑘) cos 𝜃 (𝑘)
⋅ ‖∇𝐸 (w (𝑘))‖‖Δw (𝑘 − 1)‖∇𝐸T (w (𝑘)) Δw (𝑘 − 1)) = −𝜂 (𝑘)
⋅ ‖∇𝐸 (w (𝑘))‖2 (1 + 𝛽0𝜂 (𝑘) cos2 𝜃 (𝑘)) .

(64)

As a matter of fact, 𝜂(𝑘) ≥ 0 and 1 + 𝛽0𝜂(𝑘)cos2 𝜃(𝑘) > 0
when 0 ≤ 𝛽0 < 1 and 0 ≤ 𝜂0 ≤ 1, thus ∇𝐸(w(𝑘)) ⋅ Δw(𝑘) ≤ 0
holds.

For the second case, i.e., if ∇𝐸(w(𝑘)) ⋅ Δw(𝑘− 1) ≥ 0, then𝛽(𝑘) = 0, 𝛼(𝑘) = 0, and Δw(𝑘) = −𝜂(𝑘)∇𝐸(w(𝑘)), then
∇𝐸 (w (𝑘)) ⋅ Δw (𝑘) = ∇𝐸T (w (𝑘)) Δw (𝑘)

= −𝜂 (𝑘) ‖∇𝐸 (w (𝑘))‖2 ≤ 0. (65)

The above two cases verify that ∇𝐸(w(𝑘)) ⋅ Δw(𝑘) ≤ 0
holds.

That completes the proof of Theorem 3.

7. Algorithm for MTN Optimal
Control Scheme

Steps of the algorithm for MTN optimal control scheme are
summarized as follows.
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Algorithm 4.

Step 1. Build the model MTNI for the system (1), train
it offline, and take the trained weight parameters as the
initial values of MTNI for online identification, where 𝑘 =0, 1, . . . ,N − 1. In the process of offline training, M sequence
is selected as the persistently exciting input signal for system
(1) and model (4).

Step 2. Select an ideal output signal 𝑦𝑖𝑑(𝑘) for system (1)
relative to the given reference signal 𝑟(𝑘).
Step 3. Call Algorithm 2 to calculate the optimal control law𝑢∗(𝑘) of the system (1) relative to the ideal output signal𝑦𝑖𝑑(𝑘)
offline, and the corresponding optimal output signal 𝑦∗(𝑘) is
taken as the desired output signal.

Step 4. Construct MTNC to fit the optimal control law 𝑢∗(𝑘),
select a group of initial weight parameter vector w0 in the
interval (-1, 1) in a randomway for offline training, and train
MTNC by CGmethod to obtain the initial weight parameter
vector w∗0 for online training.

Step 5. Obtain 𝑟(𝑘), 𝑢(𝑘), and 𝑦(𝑘) by sampling, and take the
real-time tracking error 𝑒(𝑘) as 𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘), where 𝑘 =0, 1, . . ..
Step 6. Obtain the input signal 𝑢(𝑘) of the system (1) by
substituting z(𝑘) into MTNC controller (29), and 𝑢(𝑘) into
(1) and (4) respectively.

Step 7. Utilize the formulas (19)-(23) to adjust the weight
parameter vector forMTNI online and the formulas (53)-(57)
to tune that for MTNC online.

Step 8. Return to Step 5 to continue the process.

8. Simulation Example

To demonstrate the effectiveness of the proposed MTN
optimal control scheme, simulation results are presented
from the following example, that is, amodification of example
2 derived from [57]. Consider the following SISO nonlinear
time-varying discrete system described by the input-output
difference equation:

𝑦 (𝑘 + 1) = 𝑎 (𝑘) 𝑦 (𝑘) + 𝑏 (𝑘)1 + 𝑦2 (𝑘) + 𝑐 (𝑘) 𝑦 (𝑘 − 1)
+ 𝑢 (𝑘) + 𝑐 (𝑘) 𝑢2 (𝑘 − 1) ,

(66)

where 𝑎(𝑘) = 0.96(1 − 0.5𝑒−0.2𝑘), 𝑏(𝑘) = 0.1lg(𝑘 + 1) and𝑐(𝑘) = 𝑒−0.2𝑘. The given reference signal is defined as 𝑟(𝑘)=1.
MTNI takes the 4-15-1 structure with 4 input nodes, 2 powers,
and 1 output node, and its input vector is [𝑦(𝑘), 𝑦(𝑘−1), 𝑢(𝑘−1), 𝑢(𝑘)]T. Let ẑ(𝑘) = [�̂�1𝑦(𝑘), �̂�2𝑦(𝑘 − 1), �̂�2𝑢(𝑘 − 1), �̂�1𝑢(𝑘)]T,
and set �̂�1, �̂�2, �̂�1, �̂�2 as 0.001. As comparison, the system
model is also built by the NN identifier (NNI) and PIDNN
identifier (PIDNNI). NNI is built from a three-layer NN of
the 4-50-1 structure with 4 input nodes, 50 hidden neurons,

and 1 output neuron. As confirmed by our simulation, a
better identification result can be obtained when 50 hidden
neurons are chosen for NNI. The activation functions for the
hidden and output layer are chosen as 𝑎ℎ(𝑥) = 1/(1 + 𝑒−𝑥)
and 𝑎𝑜(𝑥) = (1 − 𝑒−𝑥)/(1 + 𝑒−𝑥), respectively. PIDNNI is
built of a three-layer network of the 4-3-1 structure with 4
input nodes, 3 hidden neurons, and 1 output neuron. The
PID neuron structure is obtainable from [58, 59]. At the same
time, input vectors for NNI and PIDNNI are the same as for
MTNI. For offline identification, the initial weight parameters
for MTNI and NNI are chosen randomly in the interval
(−1, 1). The initial weight parameters between the input and
hidden layer for PIDNNI are chosen as ŵ𝑠1 = [1, 1, 1, 1]T,
ŵ𝑠2 = [0.1, 0.1, −0.1, −0.1]T, and ŵ𝑠3 = [1, 1, −1, −1]T. The
initial weight parameters between the hidden and output
layer for PIDNNI are taken as ŵ𝑑 = [0.1, 0.1, 0.1]T, and the
BP algorithm is chosen for the learning process. Substituting
the output 𝑦(𝑘) of MTNI for the output 𝑦(𝑘) of the system
(66) gives

x (𝑘) = [𝑥1 (𝑘) , 𝑥2 (𝑘) , 𝑥3 (𝑘)]T
= [�̂�1𝑦 (𝑘) , �̂�2𝑦 (𝑘 − 1) , �̂�2𝑢 (𝑘 − 1)]T . (67)

And its corresponding extended state space is

𝑥1 (𝑘 + 1) = �̂�1𝑤1 + �̂�1𝑤2𝑥1 (𝑘) + �̂�1𝑤3𝑥2 (𝑘)
+ �̂�1𝑤4𝑥3 (𝑘) + �̂�1 �̂�1𝑤5𝑢 (𝑘)
+ �̂�1𝑤6𝑥21 (𝑘) + �̂�1𝑤7𝑥1 (𝑘) 𝑥2 (𝑘)
+ �̂�1𝑤8𝑥1 (𝑘) 𝑥3 (𝑘)
+ �̂�1 �̂�1𝑤9𝑥1 (𝑘) 𝑢 (𝑘) + �̂�1𝑤10𝑥22 (𝑘)
+ �̂�1𝑤11𝑥2 (𝑘) 𝑥3 (𝑘)
+ �̂�1 �̂�1𝑤12𝑥2 (𝑘) 𝑢 (𝑘) + �̂�1𝑤13𝑥23 (𝑘)
+ �̂�1 �̂�1𝑤14𝑥3 (𝑘) 𝑢 (𝑘)
+ �̂�1 �̂�21𝑤15𝑢2 (𝑘) ,

𝑥2 (𝑘 + 1) = �̂�2�̂�1 𝑥1 (𝑘) ,
𝑥3 (𝑘 + 1) = �̂�2𝑢 (𝑘) ,

(68)

𝑦 (𝑘) = 1̂𝑘1 𝑥1 (𝑘) (69)

where 𝑤𝑗 (𝑗 = 1, 2, . . . , 15) can be obtained offline.
To generate the control input, MTNC takes the 3-10-1

structure with 3 input nodes, 2 powers, and 1 output node,
its input vector being z(𝑘) = [𝑘1𝑢(𝑘 − 1), 𝑙1𝑒(𝑘 − 1), 𝑙2𝑒(𝑘 −2)]T, where 𝑘1, 𝑙1, 𝑙2 are set as 0.001. As comparison, the NN
adaptive controller (NNAC) is built from a three-layer NN of
the 3-50-1 structure with 3 input neurons, 50 hidden neurons,
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and 1 output neuron. As demonstrated by our experiments, a
better control result can be obtainedwhen 50 hidden neurons
are chosen forNNAC.The activation functions for the hidden
and output layer are chosen as 𝑎ℎ(𝑥) = 1/(1 + 𝑒−𝑥) and𝑎𝑜(𝑥) = (1−𝑒−𝑥)/(1+𝑒−𝑥), respectively.The PIDNN adaptive
controller (PIDNNAC) takes the 2-3-1 structure with 2 input
nodes, 3 hidden neurons, and 1 output node, respectively.
Before the real-time control process, the MTNC controller
is generated automatically by fitting the optimal control law𝑢∗(𝑘) using the CG method, with the initial weight values
of MTNC chosen randomly in the interval (-1, 1) and the
iterations of fitting set as ite=100. For online identification
and control, the initial weight values ofMTNI andMTNC are
taken as those from the offline learning. The novel adaptive
BP algorithm with the learning rules from (19) to (23) is
employed to update the weight values of MTNI to build the
systemmodel in real time, and the formulas from (53) to (57)
are utilized to update the those of MTNC to implement the
output tracking control of the system (66) relative to the given
reference signal 𝑟(𝑘). The initial weight values for NNAC are
chosen randomly in the interval (-1, 1), those of PIDNNAC
between the input and hidden layer are set as w𝑠1 = [1, 1]T,
w𝑠2 = [0.1, −0.1]T, andw𝑠3 = [1, −0.1]T, and those of PIDNNI
are set as w𝑑 = [0.1, 0.1, 0.1]T. BP algorithm is adopted to
train NNAC and PIDNNAC online. For online identification
and control, the initial values of 𝜂(0), 𝜂0, 𝛽0, and 𝜂max for
MTNI are set as 0.2, 0.001, 0.01, and 0.5, respectively, and
those of 𝜂(0), 𝜂0, 𝛽0, and 𝜂max for MTNC as 0.2, 0.001, 0.01,
and 0.5, respectively. The learning factor is set as �̂�N = 0.2 for
NNI, 𝛼N = 0.2 for NAC, �̂�P = 0.3 for PIDNNI, and 𝛼P = 0.3
for PIDNNAC.The tracking results and errors for the system
with MTNC, NNAC, and PIDNNAC are shown as in Figures
9 and 10, respectively, and the corresponding control inputs
are presented by Figure 11.

Remark 5. In Figures 9, 10, and 11, r represents the given
reference signal; yMC, yNAC, and yPNAC are the actual
output responses for MTNC, NN, and PIDNN control
schemes, respectively; eMC, eNAC, and ePNAC represent the
corresponding tracking errors; uMC, uNAC, and uPNAC are
the corresponding control inputs.

From Figures 9 and 10, it can be seen that the overshoots
are 31.19%, 88.43%, and 67.29%; the performance index is
E<10-3 after the iterations of 14, 20, and 24 with MTN, NN,
and PIDNN control schemes; the steady-state error worked
out by taking the average of the absolute errors from the
iterations of 14 to 300 is 0.0024with theMTNoptimal control
scheme, 0.0011 taken from 20 to 300 with the traditional
NN adaptive control scheme, and 8.0383×10-4 taken from 24
to 300 with the PIDNN control scheme. Simulation results
demonstrate that the proposed control scheme outperforms
the others.

(a) Noise Interference Experiments. At time 100, a Gaussian
white noise with the mean of 0 and the standard deviation
of 0.2 is added to system (66). The simulation results are
presented in Figures 12 and 13, and the corresponding control
inputs are shown in Figure 14.
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Figure 9: The tracking trajectories.
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Figure 10: The tracking errors.

As demonstrated by Figures 12 and 13, the MTN optimal
control scheme promises a better robustness for the noise
interference than the other two.

For clearer illustration of the robustness of the proposed
control scheme, the noise interference is expanded 30 times
based on the above discussion, and the simulation results are
presented in Figures 15 and 16 and the corresponding control
inputs are shown in Figure 17.

(b) Input Superposition Experiments. When the external
superposition 𝑑(𝑘) = 0.05sin(0.005𝜋𝑘) is added to the given
reference signal 𝑟(𝑘), the simulation results are shown in
Figures 18 and 19 and the corresponding control inputs are
shown as in Figure 20.
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Figure 11: The control inputs.
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Figure 12: The tracking trajectories with noise interference.

As demonstrated by Figures 9–20, the proposed MTN
scheme is valid and of desirable for the alteration of the
system parameters.

Remark 6. For each control period, 29 times ofmultiplication
operations and 14 times of addition operations are needed
for MTNI, and 19 times of multiplication and 9 times of
addition for MTNC. That is, 48 times of multiplication and
23 times of addition are required by the MTN scheme.
However, with the exponential function expanded into finite
terms with 2 powers, 8-time multiplication and 9-time
addition operations are needed for each hidden node, and
57-time multiplication and 61-time addition operations are
required for the output layer node of NNI. Meanwhile,
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Figure 13: The tracking errors with noise interference.
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Figure 14: The control inputs with noise interference.

data normalization and inverse normalization are considered
for the online identification process, and the two func-
tions are defined as 𝑓𝑜(𝑥) = (2/𝜋)arctan𝑥 and 𝑓𝑖(𝑥) =
tan((𝜋/2)𝑥), respectively. For each normalization, 5-time
multiplication and 1-time addition operations are needed
with 𝑓𝑜(𝑥) expanded into finite terms with 3 powers; 5-time
multiplication and 1-time addition operations are required
with 𝑓𝑖(𝑥) expanded into finite terms with 3 powers. For
NNAC, 1-time multiplication and 3-time addition operations
are demanded for the input layer, 7-time multiplication
and 8-time addition operations for each hidden node, and
57-time multiplication and 61-time addition operations for
each output layer node. That is, for each control period,
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Figure 15: The tracking trajectories with expanded noise interfer-
ence.
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Figure 16: The tracking errors with expanded noise interference.

875-time multiplication and 977-time addition operations
are needed implementing the traditional neural network
adaptive control scheme. With the PIDNN control scheme,
for PIDNNI, 12-time multiplication operations and 11-time
addition operations are required for the hidden layer nodes,
and 3-time multiplication and 2-time addition operations
for the output layer node. Meanwhile, data normalization
and inverse normalization are also considered for the online
identification process, and the two functions are defined as𝑓𝑜(𝑥) = (2/𝜋)arctan𝑥 and 𝑓𝑖(𝑥) = tan((𝜋/2)𝑥), respectively.
Then, for each normalization, 5-time multiplication and 1-
time addition operations are needed with 𝑓𝑜(𝑥) expanded
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Figure 17: The control inputs with expanded noise interference.

r
yMC

yNAC
yPNAC

−0.5

0

0.5

1

1.5

2

Re
fe

re
nc

e s
ig

na
l r

, O
ut

pu
ts 

yM
C,

 y
N

AC
 an

d 
yP

N
AC

50 100 150 200 250 3000
Time (k)

Figure 18: The tracking trajectories with signal superposition.

into finite terms with 3 powers; 5-time multiplication and 1-
time addition operations are required with 𝑓𝑖(𝑥) expanded
into finite terms with 3 powers. For PIDNNAC, 6-time
multiplication and 5-time addition operations are demanded
for the hidden layer nodes, and 3-time multiplication and 2-
time addition operations for the output layer node. That is,
for each control period, 34-time multiplication and 22-time
addition operations are needed implementing the PIDNN
control scheme, while fewer operations are required by the
MTN and PIDNN schemes. And compared to the type
TMS320F28335 of DSP with the dominant frequency of
150MHz, the computation time for each control period is
473.3ns, 12346.7ns, and 373.3ns with the MTN, NN, and
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Figure 19: The tracking errors with signal superposition.

uMC
uNAC
uPNAC

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
on

tro
l i

np
ut

s u
M

C,
 u

N
AC

 an
d 

uP
N

AC

50 100 150 200 250 3000
Time (k)

Figure 20: The control inputs with signal superposition.

PIDNN control scheme, respectively. As verified by the
simulation and calculation results, the MTN and PIDNN
control schemes promise more desirable real-time control
than the NN scheme.

9. Conclusions

For the SISO nonlinear time-varying discrete system without
mechanism model, a MTN optimal control scheme has been
proposed to secure its real-time output tracking control based
on the given reference signal.

Main contributions of the paper can be summarized as
follows: (1)MTN optimal control scheme has been proposed
for general nonlinear time-varying discrete system control

design; (2) MTNI identifier and MTNC controller have
been built to simplify the network structure and raise the
convergence speed; (3) initial value selection scheme for the
weight parameters of the controller has been developed; (4)
novel adaptive BP learning algorithm has been proposed to
adjust the weight parameters for a faster convergence speed.

Simulation results show that the proposed control scheme
is effective and capable of enabling the system’s actual output
response to well track the given reference signal in real time.
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